
Enumerating 2D percolation series by the finite-lattice method: theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 335

(http://iopscience.iop.org/0305-4470/28/2/011)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 00:51

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

1. Phys. A. Math. Gen. 28 (1995) 335-349. Printed in the UK

Enumerating ZD percolation series by the finite-lattice
method: theory

Andrew Conway?
Department of Mathematics, University of Melbourne, Parkville 3052, Australia

Received 1 1 May 1994

Abstract. This paper describes a uansfer-matrix algorithm for enumeration of series of interest
in percolation on the square lanice. It allows efficient generation of both low-temperahre
and high-tempamre expansions, as well as the combinatorially interesting enumeration of
undirected animals by area or perimeter. with momenk of the other property.

1. Introduction

Percolation is an interesting problem in statistical physics. One common approach is to
formulate the problem as sites on a lattice, where each site can be occupied or not according
to some probability p . Then several macroscopic properties can be observed as a function
of p , such as the probability of the existence of an infinite cluster. These functions are
studied analytically, through Monte Carlo simulations, and through series enumeration and
analysis. This paper describes a new algorithm for enumerating several series of interest to
both the combinatorial and statistical physics communities on the two-dimensional square
lattice. No analysis of results is done in this paper, that is left for a subsequent paper [l].

The most obvious combinatorial problem is the enumeration of animals (a connected
subset of the lattice, also known as polyonimoes) by area or perimeter. Enumeration by
site area has been given by Sykes and Glen [2] on several lattices. They found that on the
square lattice, the total number of connected clusters with s sites grows asymptotically like
As-’hS where A = 4.06 0.02. They give enumerations up to s = 19. More recently,
Redelmeier [3] used ten months of CPU time and a very optimized program to extend the
enumeration to s = 24. Guttmann analysed this series to estimate h = 4.0626 f 0,0002
in [4]. This has stretched the exhaustive enumeration algorithm for the two-dimensional
square lattice to the practical l i t : any significant extensions of this series will have to
come from more efficient algorithms, such as the one described in this paper. There have
been improvements on other lattices using significantly improved counting algorithms in
PI .

Enumeration by both area and perimeter simultaneously is also possible and is very
useful: perimeter polynomials (described later) can thence be directly obtained. A lesser,
but still interesting combinatorial entity is the moment of the perimeter when enumerating
by area, and vice versa.

As usual, define g,>,t to be the number of connected clusters with area (sites or bonds)
s and perimeter (sites or bonds) 1.

t E-mail address: arc@mundoe.~hs.mu.oz.au

0305-4470~5/020335+15$19.50 @ 1995 IOP Publishing Ltd 335

336 A Conwuy

The more interesting objects of study are those directly relating to percolation. Suppose
that each site (or bond) is occupied with probability p and unoccupied with probability
q = I - p. Then the lattice will split up into various connected clusters. A phase transition
occurs here for some critical probability pc . At this phase transition, an infinite cluster
appears for the first time. First consider the low-temperature regime (p < pc) .

The phrases high temperahue and low temperuture are used throughout this paper. They
really mean high densityt and low density. The word temperature is used, as the density
often corresponds to temperature in statistical mechanical models involving percolation.

Let (n s) (p) be the mean number per lattice site of clusters of area s. Then

The perimeter polynomials D,&) are then defined such that

Enumeration of perimeter polynomials for the square lattice up to s = 17 is given in [Z],
together with a discussion of low-temperature percolation.

At low values of p (called the low-temperature or low density regime p c pc) . there
is no infinite cluster. Since the probability of belonging to a cluster of size s is $(a,), and
every occupied site must belong to exactly one of these types of clusters, there is a formal
relation

This is thus not a very interesting thing to compute: it is a useful test of an algorithm, but
it is not going to yield any new information. However, that is only the first moment. The
second moment is more interesting. Define

Then S (p) is the mean number of occupied sites connected to an occupied site, including
that site itself. Thus S (p) = 1 + O (p) . This is also discussed in [Z] for both site and bond
problems. b. is listed for up to 18 sites and 14 bonds. An analysis of this data in order to
obtain an estimate for pc is given in [6] .

For values of p > pc (high temperature), the problem is significantly different, as there
is now a possibility of an infinite cluster, so (3) no longer holds. Instead, it must be modified
to

where pm is the probability that a given site is in an infinite cluster, and the percolation
probability S (p) is the probability that a given occupied site is in an infinite cluster:

P(P) = P o a l P . (6)
So one wishes to calculate P (p) , but this cannot be obtained from the (n,?) values from
before: they will all cancel out and are not valid for p > pc . The solution is to work

t High density means tlwr the average density is above the critical density.

Enumerating percolation series 337

with perimeters rather than areas, which will give a function P (p) in terms of a convergent
series in q. This will not converge for p = 0 and q = 1:

Note that in the low-temperature regime this is still identically zero: it becomes 1 - (l / p) p .
The generalization of the mean size of finite clusters, S (p) , given for low temperatures

by (4) becomes

where pr = p - pm is the probability that a given site is in a finite cluster. A discussion of
high-temperature percolation in two dimensions, together with enumerations of P (p) and
S (p) for sites and bonds, for the triangular, square and honeycomb lattices can be found in
[7] and the analysis in [8] .

Work in three dimensions can be found in, for example, [9-121, and in higher dimensions
in [131. A detailed perspective more from a computer programmers' viewpoint can be found
in [141.

In the next section the algorithm is described in detail, first in general principles and
then with specific details for the various series that have been enumerated using this method.
In section 3 the computational complexity of the algorithm for each series is analysed, and
a brief conclusion is given in section 4. A subsequent paper [l] will present the results and
analysis of the series obtained by this algorithm.

2. Algorithm

The algorithm that I give here is based on the transfer-matrix paradigm, and follows a
similar pattern to the discussion of the self-avoiding paths [E] algorithm, in that work is
performed on a finite rectangular lattice, with the transfer-matrix process being applied to a
list of partial generating functions stored according to a signature. Agam, the application of
the transfer matrix is performed one site at a time, and repeated for all sites of the lattice.
When a cluster is completed, the partial generating function is accumulated into a final
resultant generating function.

The differences are:

different information is kept;
the boundary crosses sites rather than bonds;
different objects are being enumerated, so that the signature is very different;
similarly, the starting, stopping and transitions are very different;
different uniqueness conditions are used, and very little algebraic manipulation is needed
after the computation;
the timdspacdength complexity is different.

These issues will now be covered separately.

2.1. Information conserved

Each time one applies the transfer-matrix step, adding an additional site, one can increase
the total area by a certain amount Ss, and the total perimeter by an amount Si. Note that the
perimeter will not always be the total perimeter of the current object; potential perimeter

338 A Conway

I i
I

Table 1. Meaning the vnriable represented by U and the moment represented by x in F (u . x) ,
together with the amount by which to multiply a partial generadng function to add in Ss area
and St perimeter

Variable Moment Factor to account
represented by U represented by x for 6s and SI

Area Perimeter d ' (1 t ay'
Perimeter Area "81(1 t X y '

P uJ'(l-u)6'(l tz)"
q = i - p d ' (l - U p (1 t .rp

ie pwcolation

sites to the right and below the current site being added are for the moment ignored as they
will be processed later.

The most general method of storing generating functions would be to maintain a
two-variable generating function C,, gs,tuSu', Then one multiplies the partial generating
function being worked with by udrud' and accumulates.into the new partial generating
function.

However, this consumes a large amount of memory which is the ultimate limitation. It
could be more useful just to try to obtain the information relevant to the particular problem
being considered. One can obtain some function of one variable, say &(U) = E, fnun,
and some of its moments: F,(u) = m" fn,,,,u". Then one keeps a two-variable
generating function. One variable is U as above: the other is x and is related to m. The
way it is related is that F (u , x) = E,,,(l + x)'"f ,un. Then if F (u , O) = E, F['lxi,
from a binomial expansion of (1 + we obtain &(U) = Flo](u) , F,(u) = F['i(u), and
F?(u) = 2F[Z1(u)+ F["(u), etc. This turns out to be a convenient representation which can
be easily understood. This two-variable generating function has the advantage of growing
linearly with the length of the series rather than quadratically.

The meaning of U depends upon the particular quantity being evaluated. See table 1,
Typically one is mainly interested in the zeroth, first and second moments, so one only

need keep the generating functions up to order x z . Also, the transfer-matrix technique only
determines the series up to a certain power of U, so one keeps the generating function up
to uU". It is usually worthwhile keeping the generating function to one higher power,
however, as the first correction term can often be easily and efficiently calculated.

0

0
0

Enumerating percolation series 339

0

0

Figure 2. Two examples of a partial path, each with a boundary (vertical line) and the same
boundary conditions.

o.... 00
...00 00
0.0. 000
0.00 000 i‘ Figure 3.

calculation.
A typical boundary for a percolation

2.2. Moving boundhty condition labelling

When using the transfer-mahix technique to enumerate paths in a strip, the moving
boundaryt cuts across bonds. For percolation, it is more useful for the boundary to cut
across sites (see figure 3).

Now we need some method of labelling each boundary condition-to make a ‘signature’
for it. This will involve one digit for each site on the boundary. Suppose we are dealing
with a boundary W sites wide. Then there will be W sites on the boundary, and W digits
in the signature.

This can be done with eight different symbols defined in table 2. The symbols used
are the digits 0 to 7. Note that 2 and 3 are not used for site percolation; that there must
be exactly as many 5 sites as 7 sites; and that a 6 site uniquely specifies which cluster it is
connected to as the clusters cannot cross.

Table 2 Meaning of digits used in labelling the boundary.

Digit Meaning

0
I
2
3
4
5
6
7

Unoccupied site with no primeter sites already counted
Unoccupied site with one perimeter site already counted
Unoccupied site with two perimeter sites a l ~ a d y counted
Unoccupied site with three perimeter sites already counted
Occupied site not attached to any others on boundary
The fint (of at least two) connected, boundary, occupied sites
An intermediate (of dr least two) connected, boundary, occupied sites
The last (of at least two) cpnnected, boundary, occupied sites

t The line that cuts down through the lattice and moves across one site each step-see figure 2.

340 A Conway

000 00

00

P i p 4. The boundary, showing lhe next site to be added (black), the above and left sites
(dark grey) and the other boundary sites (lighf grey).

The number of possible boundary conditions for a given width w is then trivially no
more than than 8*, and in fact is significantly less (see section 3 for details).

2.3. Transitions

The mechanics of the transfer-matrix technique involve adding one site at a time. This
section will discuss the effects of adding one site.

The order used for adding sites will be first all in the leftmost column, starting from
the top and working downwards. Then all in the second column from the left, working
downwards. One continues to the right until all columns are finished.

Note that one must have one extra row on the bottom and column on the right. However,
one is not allowed to do~any operation on these extra sites which would increase the area
of the animal: it is solely to make sure that the perimeter is correct as one only works on
the perimeter above and to the left of the current site.

The site being added will be on the comer of the current boundary, as shown in figure 4.
The two most important sites are the above site and the left site. These are marked in dark
grey in figure 4. Basically, the above and left sites are the only sites that can directly
influence the current site. If one is on the top edge of the lattice, one can assume an
unoccupied, unattached site (type 0) as the above site.

The left site is the most important as it is in a sense being extended. The above site
will strongly affect what is going on, and is likely to be changed in the process. Other sites
on the signature may be changed if clusters touch at the new site.

First consider what is going to happen if the site is unoccupied (unattached if one is
talking about bonds). This will not be a possible transition if the left site is of type 4
(lone, unattached to any other site on the boundary). The problem is that this would leave
the cluster which was attached to the left site as totally unattached, meaning that there
would now be more than one cluster, with no hope of ever joining them. Since we only
want to count connected clusters, this is not acceptable. The only case when this could

Enumerating percolation series 34 1

be considered, is when the left site is the only occupidattached site on the boundary, in
which case leaving the new site blank would mean that we have finished a cluster, and the
partial generating function should be accumulated into the final result. This is the only way
of finishing a cluster.

If the site to the left is anything other than a type 4 site, it is perfectly possible to have
a blank site as the current site. Note that if the left site is either a type 5 or 7, the rest of
the signature is going to have to be relabelled, as the start or end of a connected cluster is
vanishing. To do this, one finds the nearest site on the boundary in the connected cluster
(down if the site to the left is a type 5; up if it is a type 7). This site then changes number.
If it is a type 6 (middle), replace it with the type 5 or 7 which was destroyed. If it is a type
7 or 5 (the other end), replace it with a type 4 (unattached to anything else). The above
site will not change directly, although it may of course be changed indirectly due to the
procedure just described.

Trivially, no area (Ss = 0) is added as a result of not adding a site (or any bonds). Then
one must work out how many perimeter sites are being added. For the site problem, there
will be one perimeter site added if either or both of the left or above sites are occupied,
otherwise there will be no perimeter added. For the bond problem, there is one perimeter
site added for each of the occupied sites to the left or above. Thus there may be 0, 1 or
2 perimeter sites added. The code for the new site will be the number of perimeter sites
added.

Next consider (in the bond case) what happens in the next simplest case: there is one
bond added from the above site to the current site, but no bond added from the left site.
Like the above case, this is only possible if the left site is not a type 4 site. If the left site is
a type 5 or 7 site, the rest of the signature must be changed to reflect its burial. The above
site itself will probably be altered by adding a bond to it. If the above site was empty, or if
it was a type 4 (alone), the above site will become type 5 (start of a cluster), and the new
site will be a type 7 (end). If the above site was a type 5 (top) or type 6 (middle), then it
will not change, and the new site will be a type 6 (middle). If the above site is a type 7
(end) then the above site will become a type 6 (middle), and the new site will be a type 7.
The area being added is one bond. The perimeter being added can come from two places:
0 there will be one bond perimeter for the bond from the new site to the left site;

if the above site was blank, there may be some perimeter sites from that site back to the
sites above and left. The number of such perimeter sites will be two minus the number
type of the site. This is the whole point of having different types of blank sites.
We have now treated every possible case where the left site is not connected, so we

now consider the case where it is connected.
First, consider the problem in bond percolation when the bond to the left is COMeCted,

but the bond to the site above is not connected. The type of the new site will then be exactly
the type of the left site, unless the left site was unconnected, in which case the new site
will be a type 4 site (unconnected). There will be one unit of area added, and the following
sources of additional perimeter:

there will be one perimeter bond for the bond between the current site and the site
above. If the site above is blank. it must have its number increased by 1 to mark the
fact that this bond has just been counted;
if the left site is blank, there may be perimeter sites off it. The actual number of these
will be 3 minus the numerical type of the left site.
Now consider the case of adding a site (site percolation) or adding two bonds (bond

percolation). These are very similar if the above site is occupied. In either case, the area

342 A Conwa)'

Table 3. Transitions in percolation when (a) adding a site in site percolation. or (b) adding two
bonds when doing bond percolation. The row indicates the leR site. the c o l ~ m indicates the
site above. The two digits ye lhe new IefIJcurrenl site values for the signature.

Above+ Blank Blank 4 5 6 7
LeR .I (site) (bond) (unattached) Start Middle End

Blank 1.4 5,1 5,1 5 , 6 6 , 6 6 , l
4 I , 4 5. 1 5, 1 5, 6 6 . 6 6 , 7
5 1. 5 5 , 6 5, 6 5 , 6' 6 , 6' 6 , 6
6 I, 6 6, 6 6, 6 5 . 6 6 .6 6b,1
I 1 . 7 6 , I 6, I 5, I 6, 1 6b, I

Indicates ths a 5 has been converted into a 6, and the corresponding 7 should be converted

lndicates that a 7 has been converted to a 6, and the corresponding 5 should be converted to
to a 6.

a 6.

added is 2 for the bond case and 1 for the site case. Also, the contribution to perimeter
from the left site will be 0 if that site is occupidattached, and then
e 1 minus the numerical valuet of the left site for site percolation

3 minus the numerical value of the left site for bond percolation.
The new values for the above site and the new site can be read from table 3. Note that
some of these transitions involve the joining of two clusters and require a change elsewhere
in the signature.

If the site above is occupied, there is no extra perimeter due to it, and the total perimeter
added will just be the contribution from the left site.

If the site above is not occupied, then for bond percolation it will become occupied as
we are adding a bond to it from the current site. In this case the perimeter added due to
the above site will be 2 minus the numerical value of the site above. For site percolation,
the perimeter added will be 1 minus the numerical value of the site above. If the site above
was type 0, it will become type 1.

2.4. Uniqueness

Uniqueness in the vertical direction can be guaranteed by performing the calculations twice
with widths differing by 1 . For any given length of the lattice being processed, the difference
in the generating functions between a strip of width w and width w - 1 will only contain
those animals that actually use the full width. Thus uniqueness in the vertical direction is
obtained.

For site percolation, uniqueness can be guaranteed in the horizontal direction in a similar
way to that done for self-avoiding walks. That is, one does not propagate the zero signature
past the first column. This forces all animals to have at least one site in the first column,
guaranteeing uniqueness in the horizontal direction.

For bond percolation, the situation is a little more complex. In order to maintain
symmetry, one does not want to have any bonds going out of the finite lattice. One does
not allow any zero signatures past the second column; nor does one allow any signatures
not containing a horizontal bond past the second column. This can be implemented with
a flag without worrying about a blow-out in memory since it takes a few columns for the
bulk of the signatures to appear, by which time the flag is set on all of them.

t The numerical value of a site is the code number assigned to it.

Enumerating percolation series 343

2.5. Obtaining results

The above method allows one to get a generating function for all the animals that fit inside
a finite rectangular lattice of width w.

Symmetry can be used to increase the area covered. If f ~ (u , x) is the generating
function for a length L, then 2 f ~ (u , x) - fw(u, x) is the generating function for all animals
which are no more than w in extent in one direction, and no more than L in extent in
the other direction. One must then calculate which are the animals which have the lowest
power in U that do not fit into this region, as they will cause the first error in the generating
functions. One can also then calculate. the largest value of L to which it is worth progressing.
Note that the computation time goes linearly in L but exponentially in w, and the memory
requirement is pretty much independent? of L, so L should be taken as far as is useful for
a given w.

2.5.1. Low-temperature site percolation and enumeration by sites. For low-temperature
site percolation and site enumeration, the number of sites is the variable that determines the
power of U . Thus we want to find the animal with the fewest sites that has a horizontal and
vertical extent of at least w -t 1. This is clearly an animal arranged like some permutation
of a cross, with w + 1 sites going ‘vertically’, and w + 1 sites going ‘horizontally’. Two of
these sites overlap, so such an animal has 2w + 1 sites.

However, these animals can be counted efficiently, so it is easy to find the correction
term, so one can actually get f (u , x) accurate up to and including uzs+’. For this one
needs L = 2w + 1 . Without the correction term, f (u, x) is accurate to uZw.

They can be reasonably
efficiently calculated recursively, especially with dynamic programming techniques. The
basic algorithm is to consider a vertical strip at a time, and effectively do a transfer-matrix-
type operation to go from one strip tc the next. Unlike previous uses of the iransfer-matrix
technique in this paper, one does a whole strip at a time. As these animals are so restricted,

Two examples of these animals are given in figure 5.

00.0000 00000..
00.0000 0000..0
00.0000 000..00
..~8*00 00*.000
0000.00 @..0000
0000.*. .000000
0000800 0000000

Fiw 5. Two examples of the types of 3nimals which muse the first error in the generating
functions for low-temperature site and bond percolation wlculeions a d area (site and bond)
enumeration.

t Obviously, for L = 0. the memory requirement is zero, but once L has reached about w , the memory requirement
does not change much with increasing L.

344 A Conway

there are very few possible boundary configurations, (a polynomial in the width), so this al-
gorithm is fast. The boundary conditions consist of the top occupied cell f, the bottom occu-
pied cell bt, and knowledge of whether the top or bottom of the w+ 1 square grid have been
reached yet. Here is a description of the algorithm suitable for a recursive computer program:

if one has reached the last column, then count one animal iff both the top and bottom
have been reached. Otherwise,
if both the top and bottom have been mched, then there is no more room to manoeuvre
vertically, and the rest of the animal must have a horizontal line. This allows t - b + 1
animals, as the horizontal line may come from any of the f - b + 1 sites on the current
boundary;
If neither the top nor bottom have been reached, one may either continue sfnight along,
or have a vertical line from either the top or the bottom, subject to the constraint that it
must join on to the original animal;
if the bottom has been reached, but not the top, one can climb upwards. That is, the
next column will be a vertical line going upwards from the current top site t to any new
site between r and w + 1 inclusive;
if the top has been reached, but not the bottom, one can go downwards. The next
column will be a vertical line going from the current bottom site b to any new site
between 1 and b inclusive.
This just counts the number of missed animals of 2w + 1 sites: one also wants to know

the sum of perimeters and squared perimeters of these animals. This can be calculated as a
straightforward, meticulous modification of the above algorithm, which is not described in
this paper. Of course low-temperature site percolation does not need the perimeter, just the
number of sites which is 2s + 1.

A list of correction terms is given in table 4.

Table 4. An enumeration of lhe number of animals of the type shown in hgure 5, which thus
provide the ermr terms in enumerations by sites a d bonds.

U) N u m b e r o f a n i d s

0 I
1 4
2 25
3 I20
4 497
5 1924
6 7 265
7 27288
8 102745
9 388692
IO 1477721
I I 5643064
I2 21632785
13 83204260

2.5.2. Low-temperature bond percolation and enumeration by bonds. For low-temperature
bond percolation and bond enumeration, the number of bonds is the variable that determines

t All cells in between must be oceupied.

Enumerating percolation series 345

0.000 00.00
e o 0 0 0 0 0 0 0 0
o e o o o 0 0 . 0 0
o o o o e 0 0 0 0 0
000.0 00.00
Figure 6. ?\vo examples of the types of animals which uuse the fim e m r in the generating
functions for high-temperature site permlation calculations and site perimeter enumeration.

the power of U. Thus we want to find the animal with the fewest bonds which has a
horizontal and vertical extent of at least w + 1. This is again clearly an animal arranged like
some permutation of a cross, with w bonds going vertically, and w bonds going horizontally.
They will cross at some site, but the bonds do not overlap, so such an animal has 2w bonds.

However, these animals can also be efficiently counted, so it is easy to find the correction
term, so one can actually get f (u , x) accurate up to and including uZr. For this one needs
L = 2w + 1. Without the correction term, f (u. x) is accurate to uzWu--I.

To get the correction terms, one is looking for exactly the same animals as for low-
temperature site percolation (figure s), so one can use the same algorithm and table 4. The
moments are particularly easy to generate, as each animal will have an area of 2w bonds
and a perimeter of 4w + 4 bondst.

Thus one can use table 4 to get corrections to all problems described here.

2.5.3. High-temperature site percolation and enumeration by site perimeter. For high-
temperature site percolation and site perimeter enumeration, the number of perimeter sites
is the variable that determines the power of U. Thus we want to find the animal with the
fewest perimeter sites that has a horizontal and vertical extent of at least VI + 1. This set of
animals is harder to imagine than the animals for the low-temperature correction terms, but
it can be seen that such an animal will have w + 1 perimeter sites on the right, w + 1 on the
left$, and two extra perimeter sites, one at the top and one at the bottom. Some examples
of such animals are given in figure 6. Such animals have perimeter 2w + 4.

These animals can be counted very efficiently, so it is easy to find the correction term,
and one can actually get f (U, x) accurate up to and including uzw+4, For this one needs
L = w + 1. Without the correction term, f (U , x) is accurate to u ~ " ' + ~ ,

The number of animals needed for the correction term is easy to calculate: if one looks
at figure 6, one notes that the shapes of the animals can be stretched in such a manner that
there is one animal for each of the sites in the top row, excluding the leftmost and rightmost
sites. Figure 6 shows an extreme and an intermediate such animal. Thus there are w - 1
animals in the correction term.

There are so few animals that it is easy and fast to enumerate them directly and count
the area for each. Table 5 contains these correction terms. These are the correction terms
for both high-temperature percolation and the site moments of enumeration by perimeter.

t Each of the 2s + 1 sites which bonds m amched to will have four bonds coming out. Of the resulting 8w + 4
bonds, there is a 2w overlap, Zw are occupied and 4w t 4 x e perimeter bonds.
f They must be separared by the animal which has vertical extent w t 1 sites.

346 A Conway

Table 5. Correction terms for hi&temperaNre percolation.

Wndth w Number of mimats Tot31 - Second moment of area

1 0
2 I
3 2
4 3
5 4
6 5
7 6
8 7
9 8
IO 9
11 IO
I2 I I
13 12
14 13
15 14
16 15
I7 16
18 17
19 18

0
5
16
3s
64

1 05
I60
231
320
429
560
71s
896
1105
1344
1615
1920
226 I
2640

0
25
128
41 I
I040
2261
4416
7 959
13472
21 681
33 472
49 907
72240
IO1 933
140 672
190383
253 248
331721
428544

2.5.4. High-temperature bond percolntion and enumeration by bond perimeter. For high-
temperature bond percolation and bond perimeter enumeration, the number of perimeter
bonds is the variable that determines the power of U . Thus we want to find the animal with
the fewest perimeter sites which has a horizontal and vertical extent of at least w + 1. This
set of animals is easy to describe: there will be w + 1 sites reachable in each direction, and
on either side of these there will be w + 1 perimeter bonds. Each of the two directions has
two sides, so such an animal must have at least 4w t 4 perimeter bonds. One example of
such an animal is a cross; another example is a full square of side length w + 1.

These animals are very difficult to count, so it is not easy to find a correction term. No
such term has been found in this paper, so one can get f (U , x) accurate only up to and
including uqWt3.

2.6. Other technicalities

When writing a program to implement this algorithm, similar sorts of problems exist as
in the case of path enumeration algorithms [15], with similar solutions. In particular, a
hash table to access the different signatures, containing a pointer to the partial generating
function is an efficient method of using memory.

As with self-avoiding paths, modular arithmetic can cut down the memory requirements
significantly. A little more care needs to be taken as negative numbers may crop up.

One way to save a few per cent of memory is to notice that for high-temperature
percolation, the first four coefficients 1 . . . u3 are zero. Thus there is no point storing
them. To actually implement this is difficult as they are not necessarily zero for the partial
generating functions. However, a very easy optimization is not to add in the final perimeter
site when doing an accumulation. This cuts out one of the perimeter sites and s a w a little
memory with very little effort.

Enumerating percolation series

3. Complexity

347

As usual for the transfer-matrix method, the complexity in terms of both time and memory
of this algorithm is primarily determined by the number of different signatures for a given
width w. This grows exponentially with W. It is this exponent that determines the overall
usefulness of this algorithm. Note that in the rest of this section I will say that the complexity
grows like An when I really mean polynomial times A". The polynomial tends to be
unimportant as the differences in A tend to be very large and quickly swamp the polynomial.

As mentioned in section 2.2. there is an upper bound to the number of boundaries of 8"
(for bond percolation) and 6" for site percolation. The actual performance is much better, as
many signature combinations are illegal. For instance, one needs to have exactly as many
start (5) sites as end (7) sites, and middle (6) sites cannot appear outside a stadend pair.
These do not really change the exponent: they just reduce the complexity by a polynomial.
For more significant changes, we must look at the site and bond cases separately.

First consider site problems. In this case neither an unattached (4) nor an empty (0) site
can appear next to any non-emply site. Neither can a 5 follow anything other than a 1, nor
can a 7 precede anything other than a lt. In fact, these restrictions make the complexity
grow somewhat better than 3.3w (details later). Since the total number of terms obtainable
goes up by 2 for each extra value of w , this means that the computational Complexity of
the site problem grows like 1.8". This can be compared with direct enumeration which
grows worse than 5" for low-temperaturetype calculations, and faster than exponentially
for high-temperaturetype calculations. Alternatives, such as the shadow method of Sykes,
as described by Martin in [I41 are more efficient than direct enumeration for low values of
n and high dimensions, but grow faster than exponentially. However, the transfer-matrix
method is more efficient even for the values of n currently practical for present computers
for two dimensions.

For bond percolation the situation is worse, as the only restrictions are on the blank sites:
0 or 1 cannot appear between two (not necessarily mutually) attached sites; 0 or 3 cannot
appear between one attached and one unattached site, and 2 or 3 cannot appear between
any two unattached sites. Thus the complexity will grow like a 6"'. For low-temperature
percolation and bond enumeration this means that the complexity grows like f l % 2.45",
and for perimeter bond counting and high-temperature bond percolation, the complexity
grows like -$'@ % 1.5", which is significantly better than direct enumeration, for which the
growth rates are about 5" and faster than exponential, respectively.

3.1. Site percolation complexity

The total number of possible boundary conditions for a cross section of w sites can be
given by the coefficient of xu in the generating function M given by the following algebraic
language, with all labels (integers) changed to x :

M - t Z , Z l M , 4 1 M , X 7 1 M , e , 4 , 5 C 7 (9)
z + o z , o (10)
C + E, lG,6C (11)
G + 6 , lG, ZlG, 41G, 5C71G, 6C. (12)

This is actually an unambiguous grammar, though it is not in an obviously unambiguous
form. See for instance I16.171 for usage of algebraic languages in this fashion.

t These restrictions break down at the current site being processed, 8s this represents a break in the signature.

348 A Conway

Table 6. Complexity of the percolation algorithm for D given width.

w Number of boundary conditions

I 3
2 7
3 18
4 46
5 121
6 323
7 878
8 2422
9 6774
IO 19 174
11 54 852
12 I58 380
13 461 045
14 1351715
15 3987990
16 11831270
17 35273290
18 105625010

An expansion of this series is given in table 6. Note that the actual amount of memory
needed will be significantly more than table 6 indicates for two reasons:

for intermediate positions in the transformation (that is, when there is a diagonal kink
in the boundary), there is reduced connectivity at the link, allowing possibilities that
would not otherwise be allowed. This will increase the number of possible boundary
conditions to a number between the entq for w and the entry for w i 1 in table 6. It
is not straightforward to calculate this number directly:
there will be two copies of most boundary conditions, since one has an 'in' set, and an
'out' set. This will almost double the total memory requiremenk, depending upon what
order the partial generating functions are processed.

These effects only affect the results by a constant factor.
The generating function M (x) may be analysed for its critical point, which turns out to

be roughly 0.309017 (reciprocal 3.23607). Thus the complexity of site percolation using
this method grows like a polynomial times 3.23607"''.

4. Conclusion

The algorithm just presented can be used to enumerate several series of interest and their
moments involving two-dimensional clusters, with algorithmic complexity exponentially
better than previous algorithms.

The methods for producing both high- and low-temperature series, and enumeration
by area and perimeter (with moments of perimeter and area conversely) have been given.
Slight modifications can be used to get more complex moments, containing information on
both bonds and sites using this method.

Calculations have been performed on an IBM RS6000, giving series of length 25 (18)
for site (bond) low-temperature percolation, and 24(33) for site (bond) high-temperature
percolation. These will be given and analysed in a subsequent paper.

Enumerating percolation series 349

Acknowledgments

I would like to thank the University of Melbourne for the award of the A 0 Capell,
Wyselaskie and Daniel Curdie scholarships. I would like to thank Tony Guttmann for
his advice and critical reading of this manuscript, and Ian Enting for his suggestion to use
the finite lattice method for enumerating percolation series.

References

[I] Conway A R and G u t " A J 1994 On two-dimensional percolation X Phys. A: Math. Gen. submilteed
[2] Sykes M F and Glen Maureen 1976 Percolation processes in two dimensions I. Low-density series expansions

[3] Redelmeier D Hugh 1981 Counhhg polyonimoes: yet another attack Discrete Mathemtics 36 191-203
[4] Guttmann A J 1982 On the number of lattice aninwls embeddable in the square lattice J. Phyr. A: Math

[5] Meriens S 1990 Lanice animals: a fast enumeration algorithm and new perimeter polynomials J. Sfat Phys.

[6] Sykes M F, Gaunt D S and Glen Maureen 1976 Percolation processes in two dimensions 11. Critical

[7] Sykes M F, Gaunt D S and Glen Maureen 1976 Percolation processes in two dimensions III. High density

[SI Sykes M F, Gaunt D S and Glen Maureen 1976 Percolntioo processes in two dimensions N. Percolation

[9] Sykes M F, Gaunt D S md Glen Maureen 1976 Percolation processes in three dimensions L Phys. A: Math

[lo] Sykes M F 1986 G e n d n g functions for connected embeddings in a lattice: IV. Site percolation J. Phys.

[I I] Sykes M F and W i h o n M K 1986 Derivation of series expansions for a study of percolation processes J.

[I21 Gaunt D S and Sykes M F 1983 Series study of random percolation in 36 J. Phys. A: Math. Gen. 16 783-800
[I31 Adler Joan, Meir Y i d Ahamny A m n and Harris A B 1990 Series smdy of percolation moments in g e n d

[I41 Martin J L 1990 The impnd of large scale computing on lattice statistics J. S t r . Phys. 58 749-74
[E] Conway A R and G u m " A J 1993 Enumeration of self avoiding wils on n square Lanice using a transfer-

[161 Bdtr&na J and Penaud J G 1991 Animaux et arbres guingois Series formelles er Combinmoire Algebrique ed

[17] Delest M 1991 Polyominos m d animals: some recent results 1. Mmh. Chem 8 3-18

J. Phys. A: Math Gen. 9 87-95

Gen 15 1987-90

58 1095-108

eoncenbntions and the mean sire index J. Phy3, A: Math. Gen 9 97-103

series expansions. J. Phys. A: Mark Gen. 9 715-24

probability J. Phys. A: Mark Gen. 9 725-30

Gen. 9 1705-12

A: Math Gen. 19 2431-37

Phys. A: Math Gen. 19 3415-24

dimension Phys. Rev. B 41 9183

matrix technique J. Pkys. A: Mmh. Gen 26 1535-52

M Delest, G Jacob m d P Leroux p 85-102

