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1. Phys. A. Math. Gen. 28 (1995) 335-349. Printed in the UK 

Enumerating ZD percolation series by the finite-lattice 
method: theory 

Andrew Conway? 
Department of Mathematics, University of Melbourne, Parkville 3052, Australia 

Received 1 1  May 1994 

Abstract. This paper describes a uansfer-matrix algorithm for enumeration of series of interest 
in percolation on the square lanice. It allows efficient generation of both low-temperahre 
and high-tempamre expansions, as well as the combinatorially interesting enumeration of 
undirected animals by area or perimeter. with momenk of the other property. 

1. Introduction 

Percolation is an interesting problem in statistical physics. One common approach is to 
formulate the problem as sites on a lattice, where each site can be occupied or not according 
to some probability p .  Then several macroscopic properties can be observed as a function 
of p ,  such as the probability of the existence of an infinite cluster. These functions are 
studied analytically, through Monte Carlo simulations, and through series enumeration and 
analysis. This paper describes a new algorithm for enumerating several series of interest to 
both the combinatorial and statistical physics communities on the two-dimensional square 
lattice. No analysis of results is done in this paper, that is left for a subsequent paper [l]. 

The most obvious combinatorial problem is the enumeration of animals (a connected 
subset of the lattice, also known as polyonimoes) by area or perimeter. Enumeration by 
site area has been given by Sykes and Glen [2] on several lattices. They found that on the 
square lattice, the total number of connected clusters with s sites grows asymptotically like 
As-’hS where A = 4.06 0.02. They give enumerations up to s = 19. More recently, 
Redelmeier [3] used ten months of CPU time and a very optimized program to extend the 
enumeration to s = 24. Guttmann analysed this series to estimate h = 4.0626 f 0,0002 
in [4]. This has stretched the exhaustive enumeration algorithm for the two-dimensional 
square lattice to the practical l i t :  any significant extensions of this series will have to 
come from more efficient algorithms, such as the one described in this paper. There have 
been improvements on other lattices using significantly improved counting algorithms in 
PI .  

Enumeration by both area and perimeter simultaneously is also possible and is very 
useful: perimeter polynomials (described later) can thence be directly obtained. A lesser, 
but still interesting combinatorial entity is the moment of the perimeter when enumerating 
by area, and vice versa. 

As usual, define g,>,t to be the number of connected clusters with area (sites or bonds) 
s and perimeter (sites or bonds) 1. 

t E-mail address: arc@mundoe.~hs.mu.oz.au 
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The more interesting objects of study are those directly relating to percolation. Suppose 
that each site (or bond) is occupied with probability p and unoccupied with probability 
q = I - p. Then the lattice will split up into various connected clusters. A phase transition 
occurs here for some critical probability pc .  At this phase transition, an infinite cluster 
appears for the first time. First consider the low-temperature regime ( p  < pc) .  

The phrases high temperahue and low temperuture are used throughout this paper. They 
really mean high densityt and low density. The word temperature is used, as the density 
often corresponds to temperature in statistical mechanical models involving percolation. 

Let ( n s ) ( p )  be the mean number per lattice site of clusters of area s. Then 

The perimeter polynomials D,&) are then defined such that 

Enumeration of perimeter polynomials for the square lattice up to s = 17 is given in [Z], 
together with a discussion of low-temperature percolation. 

At low values of p (called the low-temperature or low density regime p c pc) .  there 
is no infinite cluster. Since the probability of belonging to a cluster of size s is $(a,), and 
every occupied site must belong to exactly one of these types of clusters, there is a formal 
relation 

This is thus not a very interesting thing to compute: it is a useful test of an algorithm, but 
it is not going to yield any new information. However, that is only the first moment. The 
second moment is more interesting. Define 

Then S ( p )  is the mean number of occupied sites connected to an occupied site, including 
that site itself. Thus S ( p )  = 1 + O ( p ) .  This is also discussed in [Z] for both site and bond 
problems. b. is listed for up to 18 sites and 14 bonds. An analysis of this data in order to 
obtain an estimate for pc is given in [6] .  

For values of p > pc (high temperature), the problem is significantly different, as there 
is now a possibility of an infinite cluster, so (3)  no longer holds. Instead, it must be modified 
to 

where pm is the probability that a given site is in an infinite cluster, and the percolation 
probability S ( p )  is the probability that a given occupied site is in an infinite cluster: 

P(P) = P o a l P .  (6) 
So one wishes to calculate P ( p ) ,  but this cannot be obtained from the (n,?) values from 
before: they will all cancel out and are not valid for p > pc .  The solution is to work 

t High density means tlwr the average density is above the critical density. 
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with perimeters rather than areas, which will give a function P ( p )  in terms of a convergent 
series in q. This will not converge for p = 0 and q = 1: 

Note that in the low-temperature regime this is still identically zero: it becomes 1 - ( l / p ) p .  
The generalization of the mean size of finite clusters, S ( p ) ,  given for low temperatures 

by (4) becomes 

where pr = p - pm is the probability that a given site is in a finite cluster. A discussion of 
high-temperature percolation in two dimensions, together with enumerations of P ( p )  and 
S ( p )  for sites and bonds, for the triangular, square and honeycomb lattices can be found in 
[7] and the analysis in [8 ] .  

Work in three dimensions can be found in, for example, [9-121, and in higher dimensions 
in [ 131. A detailed perspective more from a computer programmers' viewpoint can be found 
in [ 141. 

In the next section the algorithm is described in detail, first in general principles and 
then with specific details for the various series that have been enumerated using this method. 
In section 3 the computational complexity of the algorithm for each series is analysed, and 
a brief conclusion is given in section 4. A subsequent paper [l] will present the results and 
analysis of the series obtained by this algorithm. 

2. Algorithm 

The algorithm that I give here is based on the transfer-matrix paradigm, and follows a 
similar pattern to the discussion of the self-avoiding paths [ E ]  algorithm, in that work is 
performed on a finite rectangular lattice, with the transfer-matrix process being applied to a 
list of partial generating functions stored according to a signature. Agam, the application of 
the transfer matrix is performed one site at a time, and repeated for all sites of the lattice. 
When a cluster is completed, the partial generating function is accumulated into a final 
resultant generating function. 

The differences are: 

different information is kept; 
the boundary crosses sites rather than bonds; 
different objects are being enumerated, so that the signature is very different; 
similarly, the starting, stopping and transitions are very different; 
different uniqueness conditions are used, and very little algebraic manipulation is needed 
after the computation; 
the timdspacdength complexity is different. 

These issues will now be covered separately. 

2.1. Information conserved 

Each time one applies the transfer-matrix step, adding an additional site, one can increase 
the total area by a certain amount Ss, and the total perimeter by an amount Si. Note that the 
perimeter will not always be the total perimeter of the current object; potential perimeter 
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Table 1. Meaning the vnriable represented by U and the moment represented by x in F ( u . x ) ,  
together with the amount by which to multiply a partial generadng function to add in Ss area 
and St perimeter 

Variable Moment Factor to account 
represented by U represented by x for 6s and SI 

Area Perimeter d ' ( 1  t ay' 
Perimeter Area "81(1 t X y '  

P uJ'(l-u)6'(l tz)" 
q = i - p  d ' ( l  - U p ( 1  t .rp 

ie pwcolation 

sites to the right and below the current site being added are for the moment ignored as they 
will be processed later. 

The most general method of storing generating functions would be to maintain a 
two-variable generating function C,, gs,tuSu', Then one multiplies the partial generating 
function being worked with by udrud' and accumulates.into the new partial generating 
function. 

However, this consumes a large amount of memory which is the ultimate limitation. It 
could be more useful just to try to obtain the information relevant to the particular problem 
being considered. One can obtain some function of one variable, say &(U) = E, fnun, 
and some of its moments: F,(u) = m" fn,,,,u". Then one keeps a two-variable 
generating function. One variable is U as above: the other is x and is related to m. The 
way it is related is that F ( u , x )  = E,,,(l + x)'"f ,un. Then if F ( u , O )  = E, F['lxi, 
from a binomial expansion of (1 + we obtain &(U) = Flo](u) ,  F,(u) = F['i(u), and 
F?(u) = 2F[Z1(u)+ F["(u), etc. This turns out to be a convenient representation which can 
be easily understood. This two-variable generating function has the advantage of growing 
linearly with the length of the series rather than quadratically. 

The meaning of U depends upon the particular quantity being evaluated. See table 1, 
Typically one is mainly interested in the zeroth, first and second moments, so one only 

need keep the generating functions up to order x z .  Also, the transfer-matrix technique only 
determines the series up to a certain power of U, so one keeps the generating function up 
to uU". It is usually worthwhile keeping the generating function to one higher power, 
however, as the first correction term can often be easily and efficiently calculated. 
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Figure 2. Two examples of a partial path, each with a boundary (vertical line) and the same 
boundary conditions. 

o.... 00 
...00 00 
0.0. 000 
0.00 000 i‘ Figure 3. 

calculation. 
A typical boundary for a percolation 

2.2. Moving boundhty condition labelling 

When using the transfer-mahix technique to enumerate paths in a strip, the moving 
boundaryt cuts across bonds. For percolation, it is more useful for the boundary to cut 
across sites (see figure 3). 

Now we need some method of labelling each boundary condition-to make a ‘signature’ 
for it. This will involve one digit for each site on the boundary. Suppose we are dealing 
with a boundary W sites wide. Then there will be W sites on the boundary, and W digits 
in the signature. 

This can be done with eight different symbols defined in table 2. The symbols used 
are the digits 0 to 7. Note that 2 and 3 are not used for site percolation; that there must 
be exactly as many 5 sites as 7 sites; and that a 6 site uniquely specifies which cluster it is 
connected to as the clusters cannot cross. 

Table 2 Meaning of digits used in labelling the boundary. 

Digit Meaning 

0 
I 
2 
3 
4 
5 
6 
7 

Unoccupied site with no primeter sites already counted 
Unoccupied site with one perimeter site already counted 
Unoccupied site with two perimeter sites a l ~ a d y  counted 
Unoccupied site with three perimeter sites already counted 
Occupied site not attached to any others on boundary 
The fint (of at least two) connected, boundary, occupied sites 
An intermediate (of dr least two) connected, boundary, occupied sites 
The last (of at least two) cpnnected, boundary, occupied sites 

t The line that cuts down through the lattice and moves across one site each step-see figure 2. 
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P i p  4. The boundary, showing lhe next site to be added (black), the above and left sites 
(dark grey) and the other boundary sites (lighf grey). 

The number of possible boundary conditions for a given width w is then trivially no 
more than than 8*, and in fact is significantly less (see section 3 for details). 

2.3. Transitions 

The mechanics of the transfer-matrix technique involve adding one site at a time. This 
section will discuss the effects of adding one site. 

The order used for adding sites will be first all in the leftmost column, starting from 
the top and working downwards. Then all in the second column from the left, working 
downwards. One continues to the right until all columns are finished. 

Note that one must have one extra row on the bottom and column on the right. However, 
one is not allowed to do~any operation on these extra sites which would increase the area 
of the animal: it is solely to make sure that the perimeter is correct as one only works on 
the perimeter above and to the left of the current site. 

The site being added will be on the comer of the current boundary, as shown in figure 4. 
The two most important sites are the above site and the left site. These are marked in dark 
grey in figure 4. Basically, the above and left sites are the only sites that can directly 
influence the current site. If one is on the top edge of the lattice, one can assume an 
unoccupied, unattached site (type 0) as the above site. 

The left site is the most important as it is in a sense being extended. The above site 
will strongly affect what is going on, and is likely to be changed in the process. Other sites 
on the signature may be changed if clusters touch at the new site. 

First consider what is going to happen if the site is unoccupied (unattached if one is 
talking about bonds). This will not be a possible transition if the left site is of type 4 
(lone, unattached to any other site on the boundary). The problem is that this would leave 
the cluster which was attached to the left site as totally unattached, meaning that there 
would now be more than one cluster, with no hope of ever joining them. Since we only 
want to count connected clusters, this is not acceptable. The only case when this could 
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be considered, is when the left site is the only occupidattached site on the boundary, in 
which case leaving the new site blank would mean that we have finished a cluster, and the 
partial generating function should be accumulated into the final result. This is the only way 
of finishing a cluster. 

If the site to the left is anything other than a type 4 site, it is perfectly possible to have 
a blank site as the current site. Note that if the left site is either a type 5 or 7, the rest of 
the signature is going to have to be relabelled, as the start or end of a connected cluster is 
vanishing. To do this, one finds the nearest site on the boundary in the connected cluster 
(down if the site to the left is a type 5;  up if it is a type 7). This site then changes number. 
If it is a type 6 (middle), replace it with the type 5 or 7 which was destroyed. If it is a type 
7 or 5 (the other end), replace it with a type 4 (unattached to anything else). The above 
site will not change directly, although it may of course be changed indirectly due to the 
procedure just described. 

Trivially, no area (Ss = 0) is added as a result of not adding a site (or any bonds). Then 
one must work out how many perimeter sites are being added. For the site problem, there 
will be one perimeter site added if either or both of the left or above sites are occupied, 
otherwise there will be no perimeter added. For the bond problem, there is one perimeter 
site added for each of the occupied sites to the left or above. Thus there may be 0, 1 or 
2 perimeter sites added. The code for the new site will be the number of perimeter sites 
added. 

Next consider (in the bond case) what happens in the next simplest case: there is one 
bond added from the above site to the current site, but no bond added from the left site. 
Like the above case, this is only possible if the left site is not a type 4 site. If the left site is 
a type 5 or 7 site, the rest of the signature must be changed to reflect its burial. The above 
site itself will probably be altered by adding a bond to it. If the above site was empty, or if 
it was a type 4 (alone), the above site will become type 5 (start of a cluster), and the new 
site will be a type 7 (end). If the above site was a type 5 (top) or type 6 (middle), then it 
will not change, and the new site will be a type 6 (middle). If the above site is a type 7 
(end) then the above site will become a type 6 (middle), and the new site will be a type 7. 
The area being added is one bond. The perimeter being added can come from two places: 
0 there will be one bond perimeter for the bond from the new site to the left site; 

if the above site was blank, there may be some perimeter sites from that site back to the 
sites above and left. The number of such perimeter sites will be two minus the number 
type of the site. This is the whole point of having different types of blank sites. 
We have now treated every possible case where the left site is not connected, so we 

now consider the case where it is connected. 
First, consider the problem in bond percolation when the bond to the left is COMeCted, 

but the bond to the site above is not connected. The type of the new site will then be exactly 
the type of the left site, unless the left site was unconnected, in which case the new site 
will be a type 4 site (unconnected). There will be one unit of area added, and the following 
sources of additional perimeter: 

there will be one perimeter bond for the bond between the current site and the site 
above. If the site above is blank. it must have its number increased by 1 to mark the 
fact that this bond has just been counted; 
if the left site is blank, there may be perimeter sites off it. The actual number of these 
will be 3 minus the numerical type of the left site. 
Now consider the case of adding a site (site percolation) or adding two bonds (bond 

percolation). These are very similar if the above site is occupied. In either case, the area 
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Table 3. Transitions in percolation when (a) adding a site in site percolation. or (b)  adding two 
bonds when doing bond percolation. The row indicates the leR site. the c o l ~ m  indicates the 
site above. The two digits ye lhe new IefIJcurrenl site values for the signature. 

Above+ Blank Blank 4 5 6 7 
LeR .I (site) (bond) (unattached) Start Middle End 

Blank 1.4 5,1 5,1 5 , 6 6 , 6  6 , l  
4 I ,  4 5. 1 5, 1 5, 6 6 . 6  6 ,  7 
5 1. 5 5 ,  6 5, 6 5 ,  6' 6 ,  6' 6 ,  6 
6 I, 6 6, 6 6, 6 5 . 6  6 .6  6b,1 
I 1 .  7 6 ,  I 6, I 5, I 6, 1 6b, I 

Indicates ths a 5 has been converted into a 6, and the corresponding 7 should be converted 

lndicates that a 7 has been converted to a 6, and the corresponding 5 should be converted to 
to a 6. 

a 6. 

added is 2 for the bond case and 1 for the site case. Also, the contribution to perimeter 
from the left site will be 0 if that site is occupidattached, and then 
e 1 minus the numerical valuet of the left site for site percolation 

3 minus the numerical value of the left site for bond percolation. 
The new values for the above site and the new site can be read from table 3. Note that 
some of these transitions involve the joining of two clusters and require a change elsewhere 
in the signature. 

If the site above is occupied, there is no extra perimeter due to it, and the total perimeter 
added will just be the contribution from the left site. 

If the site above is not occupied, then for bond percolation it will become occupied as 
we are adding a bond to it from the current site. In this case the perimeter added due to 
the above site will be 2 minus the numerical value of the site above. For site percolation, 
the perimeter added will be 1 minus the numerical value of the site above. If the site above 
was type 0, it will become type 1. 

2.4. Uniqueness 

Uniqueness in the vertical direction can be guaranteed by performing the calculations twice 
with widths differing by 1 .  For any given length of the lattice being processed, the difference 
in the generating functions between a strip of width w and width w - 1 will only contain 
those animals that actually use the full width. Thus uniqueness in the vertical direction is 
obtained. 

For site percolation, uniqueness can be guaranteed in the horizontal direction in a similar 
way to that done for self-avoiding walks. That is, one does not propagate the zero signature 
past the first column. This forces all animals to have at least one site in the first column, 
guaranteeing uniqueness in the horizontal direction. 

For bond percolation, the situation is a little more complex. In order to maintain 
symmetry, one does not want to have any bonds going out of the finite lattice. One does 
not allow any zero signatures past the second column; nor does one allow any signatures 
not containing a horizontal bond past the second column. This can be implemented with 
a flag without worrying about a blow-out in memory since it takes a few columns for the 
bulk of the signatures to appear, by which time the flag is set on all of them. 

t The numerical value of a site is the code number assigned to it. 
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2.5. Obtaining results 

The above method allows one to get a generating function for all the animals that fit inside 
a finite rectangular lattice of width w. 

Symmetry can be used to increase the area covered. If f ~ ( u , x )  is the generating 
function for a length L,  then 2 f ~ ( u ,  x )  - fw(u, x )  is the generating function for all animals 
which are no more than w in extent in one direction, and no more than L in extent in 
the other direction. One must then calculate which are the animals which have the lowest 
power in U that do not fit into this region, as they will cause the first error in the generating 
functions. One can also then calculate. the largest value of L to which it is worth progressing. 
Note that the computation time goes linearly in L but exponentially in w, and the memory 
requirement is pretty much independent? of L,  so L should be taken as far as is useful for 
a given w. 

2.5.1. Low-temperature site percolation and enumeration by sites. For low-temperature 
site percolation and site enumeration, the number of sites is the variable that determines the 
power of U .  Thus we want to find the animal with the fewest sites that has a horizontal and 
vertical extent of at least w -t 1.  This is clearly an animal arranged like some permutation 
of a cross, with w + 1 sites going ‘vertically’, and w + 1 sites going ‘horizontally’. Two of 
these sites overlap, so such an animal has 2w + 1 sites. 

However, these animals can be counted efficiently, so it is easy to find the correction 
term, so one can actually get f ( u , x )  accurate up to and including uzs+’. For this one 
needs L = 2w + 1 .  Without the correction term, f (u,  x )  is accurate to uZw. 

They can be reasonably 
efficiently calculated recursively, especially with dynamic programming techniques. The 
basic algorithm is to consider a vertical strip at a time, and effectively do a transfer-matrix- 
type operation to go from one strip tc the next. Unlike previous uses of the iransfer-matrix 
technique in this paper, one does a whole strip at a time. As these animals are so restricted, 

Two examples of these animals are given in figure 5. 

00.0000 00000.. 
00.0000 0000..0 
00.0000 000..00 
..~8*00 00*.000 
0000.00 @..0000 
0000.*. .000000 
0000800 0000000 

Fiw 5. Two examples of the types of 3nimals which muse the first error in the generating 
functions for low-temperature site and bond percolation wlculeions a d  area (site and bond) 
enumeration. 

t Obviously, for L = 0. the memory requirement is zero, but once L has reached about w ,  the memory requirement 
does not change much with increasing L. 



344 A Conway 

there are very few possible boundary configurations, (a polynomial in the width), so this al- 
gorithm is fast. The boundary conditions consist of the top occupied cell f, the bottom occu- 
pied cell bt,  and knowledge of whether the top or bottom of the w+ 1 square grid have been 
reached yet. Here is a description of the algorithm suitable for a recursive computer program: 

if one has reached the last column, then count one animal iff both the top and bottom 
have been reached. Otherwise, 
if both the top and bottom have been mched, then there is no more room to manoeuvre 
vertically, and the rest of the animal must have a horizontal line. This allows t - b + 1 
animals, as the horizontal line may come from any of the f - b + 1 sites on the current 
boundary; 
If neither the top nor bottom have been reached, one may either continue sfnight along, 
or have a vertical line from either the top or the bottom, subject to the constraint that it 
must join on to the original animal; 
if the bottom has been reached, but not the top, one can climb upwards. That is, the 
next column will be a vertical line going upwards from the current top site t to any new 
site between r and w + 1 inclusive; 
if the top has been reached, but not the bottom, one can go downwards. The next 
column will be a vertical line going from the current bottom site b to any new site 
between 1 and b inclusive. 
This just counts the number of missed animals of 2w + 1 sites: one also wants to know 

the sum of perimeters and squared perimeters of these animals. This can be calculated as a 
straightforward, meticulous modification of the above algorithm, which is not described in 
this paper. Of course low-temperature site percolation does not need the perimeter, just the 
number of sites which is 2s + 1. 

A list of correction terms is given in table 4. 

Table 4. An enumeration of lhe number of  animals of the type shown in hgure 5, which thus 
provide the ermr terms in enumerations by sites a d  bonds. 

U) N u m b e r o f a n i d s  

0 I 
1 4 
2 25 
3 I20 
4 497 
5 1924 
6 7 265 
7 27288 
8 102745 
9 388692 
IO 1477721 
I I  5643064 
I2 21632785 
13 83204260 

2.5.2. Low-temperature bond percolation and enumeration by bonds. For low-temperature 
bond percolation and bond enumeration, the number of bonds is the variable that determines 

t All cells in between must be oceupied. 
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0.000 00.00 
e o 0 0 0  0 0 0 0 0  
o e o o o  0 0 . 0 0  
o o o o e  0 0 0 0 0  
000.0 00.00 
Figure 6. ?\vo examples of the types of animals which uuse the fim e m r  in the generating 
functions for high-temperature site permlation calculations and site perimeter enumeration. 

the power of U. Thus we want to find the animal with the fewest bonds which has a 
horizontal and vertical extent of at least w + 1. This is again clearly an animal arranged like 
some permutation of a cross, with w bonds going vertically, and w bonds going horizontally. 
They will cross at some site, but the bonds do not overlap, so such an animal has 2w bonds. 

However, these animals can also be efficiently counted, so it is easy to find the correction 
term, so one can actually get f (u ,  x )  accurate up to and including uZr. For this one needs 
L = 2w + 1. Without the correction term, f (u.  x) is accurate to uzWu--I. 

To get the correction terms, one is looking for exactly the same animals as for low- 
temperature site percolation (figure s), so one can use the same algorithm and table 4. The 
moments are particularly easy to generate, as each animal will have an area of 2w bonds 
and a perimeter of 4w + 4 bondst. 

Thus one can use table 4 to get corrections to all problems described here. 

2.5.3. High-temperature site percolation and enumeration by site perimeter. For high- 
temperature site percolation and site perimeter enumeration, the number of perimeter sites 
is the variable that determines the power of U. Thus we want to find the animal with the 
fewest perimeter sites that has a horizontal and vertical extent of at least VI + 1. This set of 
animals is harder to imagine than the animals for the low-temperature correction terms, but 
it can be seen that such an animal will have w + 1 perimeter sites on the right, w + 1 on the 
left$, and two extra perimeter sites, one at the top and one at the bottom. Some examples 
of such animals are given in figure 6. Such animals have perimeter 2w + 4. 

These animals can be counted very efficiently, so it is easy to find the correction term, 
and one can actually get f (U, x )  accurate up to and including uzw+4, For this one needs 
L = w + 1. Without the correction term, f ( U ,  x) is accurate to u ~ " ' + ~ ,  

The number of animals needed for the correction term is easy to calculate: if one looks 
at figure 6, one notes that the shapes of the animals can be stretched in such a manner that 
there is one animal for each of the sites in the top row, excluding the leftmost and rightmost 
sites. Figure 6 shows an extreme and an intermediate such animal. Thus there are w - 1 
animals in the correction term. 

There are so few animals that it is easy and fast to enumerate them directly and count 
the area for each. Table 5 contains these correction terms. These are the correction terms 
for both high-temperature percolation and the site moments of enumeration by perimeter. 

t Each of the 2s + 1 sites which bonds m amched to will have four bonds coming out. Of the resulting 8w + 4 
bonds, there is a 2w overlap, Zw are occupied and 4w t 4 x e  perimeter bonds. 
f They must be separared by the animal which has vertical extent w t 1 sites. 
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Table 5. Correction terms for hi&temperaNre percolation. 

Wndth w Number of mimats Tot31 - Second moment of area 

1 0 
2 I 
3 2 
4 3 
5 4 
6 5 
7 6 
8 7 
9 8 
IO 9 
11 IO 
I2 I I  
13 12 
14 13 
15 14 
16 15 
I7 16 
18 17 
19 18 

0 
5 
16 
3s 
64 

1 05 
I60 
231 
320 
429 
560 
71s 
896 
1105 
1344 
1615 
1920 
226 I 
2640 

0 
25 
128 
41 I 
I040 
2261 
4416 
7 959 
13472 
21 681 
33 472 
49 907 
72240 
IO1 933 
140 672 
190383 
253 248 
331721 
428544 

2.5.4. High-temperature bond percolntion and enumeration by bond perimeter. For high- 
temperature bond percolation and bond perimeter enumeration, the number of perimeter 
bonds is the variable that determines the power of U .  Thus we want to find the animal with 
the fewest perimeter sites which has a horizontal and vertical extent of at least w + 1. This 
set of animals is easy to describe: there will be w + 1 sites reachable in each direction, and 
on either side of these there will be w + 1 perimeter bonds. Each of the two directions has 
two sides, so such an animal must have at least 4w t 4 perimeter bonds. One example of 
such an animal is a cross; another example is a full square of side length w + 1. 

These animals are very difficult to count, so it is not easy to find a correction term. No 
such term has been found in this paper, so one can get f ( U ,  x )  accurate only up to and 
including uqWt3. 

2.6. Other technicalities 

When writing a program to implement this algorithm, similar sorts of problems exist as 
in the case of path enumeration algorithms [15], with similar solutions. In particular, a 
hash table to access the different signatures, containing a pointer to the partial generating 
function is an efficient method of using memory. 

As with self-avoiding paths, modular arithmetic can cut down the memory requirements 
significantly. A little more care needs to be taken as negative numbers may crop up. 

One way to save a few per cent of memory is to notice that for high-temperature 
percolation, the first four coefficients 1 . . . u3 are zero. Thus there is no point storing 
them. To actually implement this is difficult as they are not necessarily zero for the partial 
generating functions. However, a very easy optimization is not to add in the final perimeter 
site when doing an accumulation. This cuts out one of the perimeter sites and s a w  a little 
memory with very little effort. 
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As usual for the transfer-matrix method, the complexity in terms of both time and memory 
of this algorithm is primarily determined by the number of different signatures for a given 
width w. This grows exponentially with W. It is this exponent that determines the overall 
usefulness of this algorithm. Note that in the rest of this section I will say that the complexity 
grows like An when I really mean polynomial times A". The polynomial tends to be 
unimportant as the differences in A tend to be very large and quickly swamp the polynomial. 

As mentioned in section 2.2. there is an upper bound to the number of boundaries of 8" 
(for bond percolation) and 6" for site percolation. The actual performance is much better, as 
many signature combinations are illegal. For instance, one needs to have exactly as many 
start (5) sites as end (7) sites, and middle (6) sites cannot appear outside a stadend pair. 
These do not really change the exponent: they just reduce the complexity by a polynomial. 
For more significant changes, we must look at the site and bond cases separately. 

First consider site problems. In this case neither an unattached (4) nor an empty (0) site 
can appear next to any non-emply site. Neither can a 5 follow anything other than a 1, nor 
can a 7 precede anything other than a lt. In fact, these restrictions make the complexity 
grow somewhat better than 3.3w (details later). Since the total number of terms obtainable 
goes up by 2 for each extra value of w ,  this means that the computational Complexity of 
the site problem grows like 1.8". This can be compared with direct enumeration which 
grows worse than 5" for low-temperaturetype calculations, and faster than exponentially 
for high-temperaturetype calculations. Alternatives, such as the shadow method of Sykes, 
as described by Martin in [I41 are more efficient than direct enumeration for low values of 
n and high dimensions, but grow faster than exponentially. However, the transfer-matrix 
method is more efficient even for the values of n currently practical for present computers 
for two dimensions. 

For bond percolation the situation is worse, as the only restrictions are on the blank sites: 
0 or 1 cannot appear between two (not necessarily mutually) attached sites; 0 or 3 cannot 
appear between one attached and one unattached site, and 2 or 3 cannot appear between 
any two unattached sites. Thus the complexity will grow like a 6"'. For low-temperature 
percolation and bond enumeration this means that the complexity grows like f l  % 2.45", 
and for perimeter bond counting and high-temperature bond percolation, the complexity 
grows like -$'@ % 1.5", which is significantly better than direct enumeration, for which the 
growth rates are about 5" and faster than exponential, respectively. 

3.1. Site percolation complexity 

The total number of possible boundary conditions for a cross section of w sites can be 
given by the coefficient of xu in the generating function M given by the following algebraic 
language, with all labels (integers) changed to x :  

M - t  Z , Z l M , 4 1 M , X 7 1 M , e , 4 , 5 C 7  (9) 
z + o z , o  (10) 
C + E, lG,6C (11) 
G + 6 ,  lG,  ZlG, 41G, 5C71G, 6C.  (12) 

This is actually an unambiguous grammar, though it is not in an obviously unambiguous 
form. See for instance I16.171 for usage of algebraic languages in this fashion. 

t These restrictions break down at the current site being processed, 8s this represents a break in the signature. 
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Table 6. Complexity of the percolation algorithm for D given width. 

w Number of boundary conditions 

I 3 
2 7 
3 18 
4 46 
5 121 
6 323 
7 878 
8 2422 
9 6774 
IO 19 174 
11 54 852 
12 I58 380 
13 461 045 
14 1351715 
15 3987990 
16 11831270 
17 35273290 
18 105625010 

An expansion of this series is given in table 6. Note that the actual amount of memory 
needed will be significantly more than table 6 indicates for two reasons: 

for intermediate positions in the transformation (that is, when there is a diagonal kink 
in the boundary), there is reduced connectivity at the link, allowing possibilities that 
would not otherwise be allowed. This will increase the number of possible boundary 
conditions to a number between the entq for w and the entry for w i 1 in table 6. It 
is not straightforward to calculate this number directly: 
there will be two copies of most boundary conditions, since one has an 'in' set, and an 
'out' set. This will almost double the total memory requiremenk, depending upon what 
order the partial generating functions are processed. 

These effects only affect the results by a constant factor. 
The generating function M ( x )  may be analysed for its critical point, which turns out to 

be roughly 0.309017 (reciprocal 3.23607). Thus the complexity of site percolation using 
this method grows like a polynomial times 3.23607"''. 

4. Conclusion 

The algorithm just presented can be used to enumerate several series of interest and their 
moments involving two-dimensional clusters, with algorithmic complexity exponentially 
better than previous algorithms. 

The methods for producing both high- and low-temperature series, and enumeration 
by area and perimeter (with moments of perimeter and area conversely) have been given. 
Slight modifications can be used to get more complex moments, containing information on 
both bonds and sites using this method. 

Calculations have been performed on an IBM RS6000, giving series of length 25 (18) 
for site (bond) low-temperature percolation, and 24(33) for site (bond) high-temperature 
percolation. These will be given and analysed in a subsequent paper. 
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